* Nykampt Tranchina, JCNS 2000 Gersturer et al, Ch. 13.

Lealey lategrate + Fire Nuwn with...

- leak Corductance g_{r}, leak reversal potetitial Er
- Exatatay syn. ivents ge (f),
- lukibitoy" " $g:(f)$,

$$
C \dot{V}=g_{r}\left(E_{r}-V\right)+g_{2}(t)\left(E_{e}-V\right)+g_{i}(t)\left(E_{i}-V\right)
$$

\div by g_{r}, let $\tau=\frac{c}{g_{r}}, G_{e}(t)=\frac{g_{e}}{g_{r}}, G_{i}=\frac{g_{i}}{g_{r}}$

$$
\tau \dot{v}=\left(E_{r}-V\right)+G_{e}(t)\left(E_{e}-V\right)+G_{i}(f)\left(E_{i}-V\right)
$$

E_{i} -

- Fast $(\delta-\delta f)$ E, I synaptic inputs

Consider I ringent, $\quad C_{e}(t)=A_{e}^{k} \delta\left(t-T_{e}^{k}\right)$
Solve LIF equation, $V\left(T_{e}^{k+}\right)-V\left(T_{e}^{k-}\right)=\Delta V$
$=\left(1-e^{-\Gamma_{e}^{k}}\right)\left[E_{e}-v\left(T_{e}^{k-}\right)\right]$, where

$$
T_{e}^{k}=A e^{k / \tau} .
$$

In limit $A_{e}^{k} \rightarrow \infty, \quad($ strang-symapse $), \quad \Delta V=E_{e}-V\left(T_{e}^{k-}\right)$, is jump all the way $\rightarrow E_{e}$ reversal potential: wakes some!

- FACT: Synapses ham stochastic amplitudes. Define VIA complementing

$$
\operatorname{Pr}\left(\Gamma_{e}^{*} l_{i}>x\right)=\tilde{F}_{\Gamma_{e l_{i}}^{*}}(x)
$$

where $\Gamma_{e / i}^{k}=1-\exp \left(-\Gamma_{e / i}^{k}\right)$

And... Teri are Poisson yo l rates J_{i}^{k} process

- Population Density:-

Consider one neuran evolving w/ above...

$$
\operatorname{Pr}(V(t) \in(v, v+d v))=p(v, t) d v
$$

OR... for
Population of indef. neurons $\ldots=\operatorname{Pr}(v(t) \in(v, v+d v))$, for neuron chosen at randan.
$=$ Fraction of neurons with

$$
V(t) \in\left(v_{1} v+d v\right)
$$

$$
\operatorname{Pr}\left(v(t) \in(a, b)=\int_{a}^{b} \rho\left(v^{\prime}, t\right) d v^{\prime} p\left(v^{\prime}, t\right)\right.
$$

PRoBABILITY

$$
\begin{aligned}
& \text { - Flux J }(a, t) \text { : probe. } v(t) \text { is below a at time } t+\text { above a at } t+A t \\
& =\quad J(a, t) d t . \quad \text { yew } \\
& \text { (can be }+ \text { or -) } \\
& \frac{\partial}{\partial t} \int_{a}^{b} p\left(v^{\prime}, t\right) d v^{\prime}=J(a, t)-J(b, t) \text {, if } v_{\text {reset }} \notin(a, b) \\
& \frac{\partial}{\partial t} \int_{a}^{v} p\left(v^{\prime}, t\right) d V^{\prime}=J(a, t)-J(v, t) \text {; the } \frac{\partial}{\partial y} \\
& \frac{\partial}{\partial t} p(v, t)=-\frac{\partial}{\partial v} J(v, t)
\end{aligned}
$$

what's missing? Stall need to ...
Incorporate neal firing and reset:

- Frena rate $r(t)=J(v+h, t)$
- Reset: if $V_{\text {reset }} \in(a, b)$

$$
\frac{\partial}{\partial t} \int_{a}^{b} \rho\left(v^{\prime}, t\right) d v^{\prime}=v(t)+J(a, t)-J(b, t)
$$

rate enter ($a, b)$ due to reset
so, in general: (assume here $a<V_{\text {reset }}$)

$$
\frac{\partial}{\partial t} \int_{a}^{v^{v},} \rho\left(v^{\prime}, t\right) d v^{\prime}=r(t) \cdot \underbrace{H\left(v-v_{\text {reset }}\right)}_{\text {Cary include if } \left.v>v_{\text {re set }}\right)}+J(a, t)-J(v, t)
$$

$$
\begin{align*}
& \text { Take } \tag{1}\\
& \frac{\partial}{\partial v}
\end{align*} \frac{\partial}{\partial t} \rho(v, t)=r(t) \delta\left(v-v_{\text {reset }}\right)-\frac{\partial}{\partial v} J(v, t)
$$

due to duff

Say:

$$
\frac{d U}{d t}=\frac{1}{\tau}\left(E_{r}-V\right)
$$

Trajectanies in $[V-\Delta U, V]$ sill cross $V . \quad \Delta V=\frac{d V}{d t} \cdot d$ -

$$
\begin{aligned}
& J_{l}(v, t) \cdot d t=\rho(v, t) \cdot \Delta v \approx \rho(v, t) \cdot \frac{d v}{d t} \cdot d t \\
& \rightarrow J_{l}(v, t)=\rho(v, t) \cdot \frac{d v}{d t}(y, t)
\end{aligned}
$$

Eccitatay flux

- $J_{e}(t)=$ proba $v(t)$ below V and $v(t+d t)$ above V, due to exc. flux

$$
\begin{aligned}
= & \operatorname{Pr}\left[T_{e}^{k} \in(t, t+d t)\right] \\
& \int_{\operatorname{Pr}\left[v \in\left(V-v^{\prime}, v-v^{\prime}+d v^{\prime}\right)\right]} d v^{\prime} \rho\left(V^{\prime}, t\right) \cdot \operatorname{Pr} \underbrace{\left[T_{e}^{*} k\right.}_{\operatorname{Pr}(k i c k \text { lg-enargh!) }}\left(E_{e}-v^{\prime}\right)>\left(v-v^{\prime}\right)]
\end{aligned}
$$

limits of integral: $\int \sqrt[V]{V} d v^{\prime} \ldots$ Jumping up past V
$E_{i} \longleftarrow$ lower bound on $V(t)$

$$
=d t \cdot V_{e}(t) \int_{\epsilon_{i}}^{V} d v^{\prime} p\left(v^{\prime}, t\right) \tilde{F}_{T_{e}^{*}}\left(\frac{V-V^{\prime}}{E_{e}-V^{\prime}}\right)
$$

- Inhibitay flux. LIKEWISE:

$$
J_{i}(t)=-\nu_{i}(t)\left\{\begin{array}{l}
V_{\text {th }} \leftarrow \text { upper bowed } \\
d v v^{\prime} p\left(v^{\prime}, t\right) \widetilde{F}_{\Gamma_{i}}{ }^{*}\left(\frac{V-v^{\prime}}{\bar{E}_{i}-V^{\prime}}\right)
\end{array}\right.
$$

ASIDE:
Why could we simply ADD leak synaptic fluxes above?

Cancun: Poubce-countina trajeitanes that move past $V, \mathrm{~g}$. due to Bolt leak and excitation

Consider time interval before spike $T_{e}^{k},\left[T_{e}^{k}-d t, T_{e}^{k}\right]$
a Tray. crossing due to duet:

where $\Delta V=\left[E_{r}-V\right] \cdot d t$
$\longrightarrow \theta$ as $d t \rightarrow 0$.
B Tray crossing due to synaptic emit T_{e}^{k}

$$
V-\Gamma_{e}^{*}\left[E_{e}-v\right]
$$

$\Delta V_{j m} \mathrm{~g}$
Point: $\Delta V_{\text {jump }} \longrightarrow 0$ as $d t=0!$
The "double counted" trajafares ave a fraction.

$$
\sim \frac{\Delta V}{\Delta V_{j \operatorname{jin}} p} \rightarrow 0 \text { as } d t \rightarrow 0
$$

Summary (Just say...)
CB an interesting affervence in "type" of events. gradual flite velocity due to dunt, from $d t$
vS.
∞-velocity, o-time jugs from $\mathrm{o}_{\mathrm{e}}(\mathrm{t}) \ldots$ allowing our dentation.
(1) Together of def? of $J=J_{l}+J_{e}+J_{i} \ldots$ dfines full Popoulatia density model.

- Dreet nomenial apprach:

Discretize valtage

Compute $\frac{\partial J}{e, i, e}$ on grid. (Esalueate $J(v, t)$ on guad, then finte defferene')

Disrefize $\delta\left(V-V_{\text {reset }}\right)$ (see details in Nykanu + Tranchinm)
Solve resulty ODES nurencally (trap. mule).
Details: Appendix JWS... enave stablity, atc,

Fig: 8 of ppr ... Accampanying hanlout.

Why Botter?

- Speedup of ~100X over diset LIF sims w/ 1000 neuras per pop.
Faster still w/... Mare nevars
- d'ffuscà approx. belowr.
- Cain lecture: Modar dipite wothads
- Eigenfurnetà Expansuer (Knight 2000) PCA apprach (Knight/OMortay 1999):
Projat $\rightarrow \sim 10-D$ space, almost instat solutiars in Low-D app Δx.
-Theony:" Dimensuer" of Pop. Dynames
- Expleit expressui's for foring vates as $f=s$ of inpant idnive" t 'balogioni.

Chane Abbott Reyes Neuran 2003
"havi and brekgrond wipats..."

- Extend \rightarrow Theay of interacting neural poprlatia's (Cor "self-cansistant" loopling within a given poprlation)
- Dyamis of INTERATING poputation's.

- Other pops set inpent RATE:

$$
V_{e}^{k}=\underbrace{V_{e, 0}^{k}(t)}_{\text {Saekgond" vate }}+\sum_{j \in \text { exc. }_{\text {Pops }}}^{\substack{\text { Sakje }}} \int_{\substack{\text { Temparal kivetrs of } \\ \text { Pop-pop coupling }}}^{\infty} \underbrace{\infty}_{j k k}\left(t^{\prime}\right) r^{j}\left(t-t^{\prime}\right) d t^{\prime}
$$

\rightarrow Coupleel pop. deunsity eqn.

Diffusion appr oximation.
Cawider, e.g.

$$
J_{e}(v, t)=v_{e}(t) \int_{E_{i}}^{v} \tilde{F}_{\Gamma_{e}^{*}}\left(\frac{V-v^{\prime}}{E_{e}-v^{\prime}}\right) \rho\left(v^{\prime}, t\right) d v^{\prime}
$$

T-Sences of $\rho\left(V^{\prime}, t\right)$ around V :

$$
\begin{aligned}
& p\left(v^{\prime}, t\right) \approx \rho(v, t)+\left(v^{\prime}-v\right) \frac{\partial \rho}{\partial v}(v, t) \\
& J_{e}(v, t) \approx v_{e}(t)[\underbrace{\int_{E_{i}}^{v} \widetilde{F}_{\Gamma_{e}^{*}}\left(\frac{v-v^{2}}{\overline{E_{e}-v}}\right) d v^{\prime}}_{c_{\text {le }}(v)} \cdot \rho(v, t)+ \\
& \underbrace{\int_{E i}^{v} \widetilde{F}_{T_{e}^{*}}\left(\frac{v-v^{\prime}}{E_{e}-v}\right)\left(v^{\prime}-v\right) d v^{\prime}}_{-C_{2 e}(v)} \cdot \frac{\partial}{\partial v} \rho(v, t) \\
& =v_{e}(t)\left[c_{1 e}(v) p(v, t)-c_{2, e} \frac{\partial}{\partial v} \rho(v, t)^{-}\right]
\end{aligned}
$$

with similar approx. of $J_{i}(t)$, find:

$$
\begin{aligned}
\frac{\partial \rho}{\partial t} & =-\frac{\partial}{\partial v}\left[\left(v_{e}(t) c_{1 e}(v)-v_{i}(t) c_{i i}(v)+\frac{E_{r}-v}{\tau}\right) \rho(v, t)\right] \\
& -\frac{\partial}{\partial v}\left[\left(v_{e}(t) c_{2 e}(v)+v_{i}(t) c_{2 i}(v)\right) \frac{\partial \rho\left(v_{1}(t)\right.}{\partial v}\right]
\end{aligned}
$$

$$
\begin{aligned}
&+\delta\left(v-v_{\text {reset }}\right) r(t) \\
& r(t)=-v_{e}(t) e_{2 e}\left(v_{t h}\right) \frac{\partial \rho}{\partial v}\left(v_{t h}, t\right) \\
& B \cdot C \cdot \quad \rho\left(v_{t h}, t\right) \equiv 0 \quad \rho(-\infty, t)=0
\end{aligned}
$$

.Clod approx. when $\frac{\partial^{2} p}{\partial v^{2}}$ is sural compared with essential support of $\widetilde{F}_{\Gamma_{e_{i}^{*}}}(\cdot)$
ice, limit of small synaptic events.

- For simpler, current - based LIF, (8.41, Text) do similar derivation.

$$
\begin{aligned}
& \frac{d v}{d t}=\frac{-v}{\tau}+\frac{1}{c} I^{e x t}+\sum_{k} \sum_{t_{k}^{f}} \omega_{k} \delta\left(t-t_{k}^{f}\right) \quad\binom{8.20}{\text { Gersther }} \\
& k=1\|1\| 1 \| 1 w_{1} \\
& k=2 \\
& h \quad 1111\left\|\| \omega_{2}\right.
\end{aligned}
$$

Imannig poisson trains, rates $J_{k}, \delta-g^{\circ}$ CURRENT PULSES,
Multiple "types" k wrights oh

IMPortant case: $w_{r}>0$, Excitatory

$$
\omega_{2}<0 \text {, (NALIBITORy }
$$

- Sec. 8.4 takes similar deffusian limit \longrightarrow

$$
\begin{aligned}
\tau \frac{\partial}{\partial t} p(v, t)= & -\frac{\partial}{\partial v}\left[\left(-v+\tau \sum_{k} v_{k} w_{k} . \quad p(v, t)\right]\right. \\
& +\frac{1}{2}\left[\tau \sum_{k} v_{k} w_{k}^{2}\right] \frac{\partial^{2}}{\partial v^{2}} \rho(v, t) \\
& +\tau r(t) \delta\left(v-v_{\text {reset }}\right)
\end{aligned}
$$

where $v(t)=\left.\frac{1}{2}\left(\tau \sum_{k} v_{h} w_{k}^{2}\right) \frac{\partial p}{\partial v}(v, t)\right|_{v_{+h}}$

Defwe:

$$
\mu=\tau \sum_{k} v_{k} w_{k} \quad: \text { Mean wiout" }
$$

$\sigma^{2}=\tau \quad \sum_{k} J_{k} w_{k}^{2} \quad: V$ Varame of input"
(STRACTV: $\mu=\left\langle\frac{1}{T} \int_{0}^{T} \sum_{k} \sum_{t_{k}^{f}} \delta\left(t-t_{k}^{f}\right)\right\rangle$
Nlem of Men riput our time
intenal

$$
\sigma^{2}=\operatorname{var} C
$$

$$
\begin{aligned}
\rightarrow \tau \frac{\partial}{\partial t} \rho(u, t)= & -\frac{\partial}{\partial y}[(-v+\mu)] \rho(v, t)+\frac{1}{2} \sigma^{2} \frac{\partial^{2}}{\partial v^{2}} \rho(v, t) \\
& +r(t) \delta\left(v-v_{\text {rest }}\right)
\end{aligned}
$$

where $\left.r(t)=\frac{1}{2} \sigma^{2} \frac{\partial \rho}{\partial y}(v, t) \right\rvert\, v_{t h} \quad$ (13.16, Text)

- FACT: edvivalent to stochigtic diffrreenim Éauation

$$
d v=\frac{1}{\tau}[-v+\mu] d t+\frac{1}{2} \frac{\sigma}{\sqrt{\tau}} d w_{t}
$$

\times Delete thas Rg!

Explizit Solutici for steady-state firing vate:
-in (13-16), set $\frac{\partial}{\partial t} \rho=0$, (and \div by $\left.\tau\right) \rightarrow$ $0=-\frac{\partial}{\partial v} J(v)+s \delta\left(v-v_{\text {reset }}\right)$, where

$$
J(v)=\frac{-v+\mu}{\tau_{m}}-\frac{1}{2} \frac{\sigma^{2}}{\tau_{m}} \frac{\partial}{\partial v} p(v)
$$

Guess + Plog sol= for $p(V)$, detemine unk uan Canstants...

$$
\rightarrow r=\tau \sqrt{\pi} \int_{\frac{V_{\text {reset }}-\mu}{\sigma}}^{\frac{V_{\text {thuesh }}-\mu}{\sigma}}
$$

See: Both M and o impact rate.

- What do we expect to see biologically?

$$
\text { Say... } \quad \begin{aligned}
k=e_{1}: & \text { exit. }+ \text { inhib. pops. } \\
\quad V_{e}= & N e r_{e} \times \text { firing at } \quad V_{i}=N_{i} r_{i} \\
& \# \text { pre-sym vale } r_{e} \\
& e \text { all.... }
\end{aligned}
$$

Large Net limit $(\approx 1,000)$
How should weights we, w_{i} scale?
CASE 1 .

$$
w_{l}=\frac{\overline{w_{e}}}{N_{l}} \quad, \quad w_{i}=\frac{\bar{w}_{i}}{N_{i}} r_{i}
$$

$\underline{\text { Sups }} \cdots{ }_{\tau}^{\mu}=\bar{w}_{e} r_{e}+\bar{w}_{i} r_{i}$, Constant. But...
Br e $\quad \frac{\sigma^{2}}{\bar{c}}=\operatorname{Nere}\left(\frac{\overline{w_{e}}}{N_{e}}\right)^{2}+N_{i} r_{i}\left(\frac{\bar{w}_{i}}{s_{i}}\right)^{2} \longrightarrow 0!$
Dnft-Dominated regime
Ned: (the $\tau=1$ here + below)
$\mu>v$ th. to fine. Then, firing close
to oscillatory:

$w /$ Fans Factor $\ll 1$.

Empiricitan: Mary alls have Fano ≈ 1

CASE 2: $\quad \omega_{e}=\frac{\bar{\omega}_{e}}{\sqrt{N_{e}}} \quad, \omega_{i}=\frac{\overline{\omega_{i}}}{\sqrt{N_{i}}}$

$$
\begin{aligned}
\sigma^{2}= & r_{e} \omega_{e}{ }^{2}+r_{i} \omega_{i}{ }^{2}, \text { const.... } \stackrel{\text { BUT }}{ } \\
\mu= & \overline{\omega_{e}} \sqrt{N_{e}} r_{e}+\bar{w}_{i} \sqrt{N_{i}} r_{i} \rightarrow \pm \infty, \text { UNESS } \\
& \overline{\omega_{e}} r_{e} \sqrt{N_{e}}=-\bar{\omega}_{i} r_{i} \sqrt{N_{i}} \text { so } \mu=0 .
\end{aligned}
$$

That is BiClAJED REGIME.

Average exc.t inh. Cancel. Only fuctuatian's dive activity.

$F_{A_{N O}} \approx 1$.
Softy+ Koch 1993
Shadlent Newsene J. Nsci 94 van Vreeswing Sampohily, Sciome 1996

What happens empinially? Cardin et al Neurm 2008:
(slide...) Botit μ and σ^{2} vary $w /$ stimi, in ping rates types of virval stim.

- Measare intraclulaly, record Mear $(U(t))$

$$
\text { Std }(V(f))
$$

(w/spikes delated).

Application to GAIN of nevval populatiais...
ABBOTT/CHAJCE... 2000 NEURON
R.pang presentation!
\rightarrow Applicatiai to Linear Response input-output dynamies.
Richardsen, Phys. Rew.E, 2007. Sec. 13.5 .2 , Gerstwer et al

$$
\begin{aligned}
\frac{\partial \rho}{\partial t} & =-\frac{\partial}{\partial y}[f(y)+\mu]_{\rho}+\frac{\sigma^{2}}{2} \frac{\partial^{2}}{\partial v^{2}} p+r(t) \delta\left(v-v_{\text {reset }}\right) \\
& r(t)=\left.\frac{1}{2} \sigma^{2} \frac{\partial^{2} p}{\partial v^{2}}\right|_{\text {thmerk }} \\
& =-\frac{\partial}{\partial y} J(v)+r(t) \delta\left(v-v_{\text {reset }}\right)
\end{aligned}
$$

Say: $\mu=\mu_{0}, \sigma=\sigma_{0}^{2}$, constant.
Cusibler: Stand STATE $p(\nu, t)=p_{0}(y)$

$$
r(t)=r_{0}
$$

stand

$$
J(v)=J_{0}(4)
$$

$$
\begin{align*}
\rightarrow & 0=-\frac{\partial}{\partial v} J_{0}(V)+r_{0} \delta\left(v-v_{\text {resA }}\right) \tag{1}\\
& J_{0}(v)=\left[f(v)+\mu_{0}\right] \rho_{0}(V)-\frac{1}{2} \sigma^{2} \frac{\partial}{\partial y} \rho_{0}(V) \tag{2}
\end{align*}
$$

Two First-seoor ove!
(i). Let $j_{0}=r_{0} J_{0}$, treating r_{0} as inkmoun const.

Then $j_{0}\left(v_{+h}\right)=1$
(i) says

$$
\begin{aligned}
\frac{\partial}{\partial v} j_{0}(v) & =\delta\left(v-v_{\text {senet }}\right) ; \int_{v}^{v_{+h}} d w^{\prime} \\
-j_{0}(v) & =\int_{V}^{v+h} d v^{\prime} \delta\left(j^{\prime}-v_{\text {rest }}\right)-1 \\
-j_{0}(v) & =\left(1-H\left(v-v_{\text {rest }}\right)-1\right. \\
j_{0}(v) & =H\left(v-v_{\text {seset }}\right)
\end{aligned}
$$

$$
\text { (2) }\left(\left[f(v)+\mu_{0}\right] \rho_{0}(y)\right)-\frac{\sigma^{2}}{2} \frac{\partial \rho_{0}(u)}{\partial y}=r_{0} j_{0}(y) \quad, \rho_{0}\left(v_{-1 h}\right)=0
$$

$$
\frac{d p_{0}(y)}{d y}=\frac{2}{\sigma^{2}}\left[\left(f(y)+\mu_{0}\right) P_{0}(y)-H\left(y-v_{\text {reset }}\right)\right]
$$

Solve via (BAtelewARD) numinal integration (ie, Enler Mathod) $V_{\text {th }}$; I.C. $P_{0}(x)=0$

Intyrate outie V^{*} st. $\rho o\left(v^{*}\right)=0$
$\left(\right.$ Expat b/c $f\left(x^{*}\right)>0$ for $v^{*}<c 0$, and integratin BAclewmedS.

- Determine constant... via hormalization,

$$
\int_{v^{*}}^{v^{t h}} d v^{\prime} p_{0}\left(v^{\prime}\right)=1 .
$$

For... $\quad f(y)=-v \quad$ lealur
For... $f(Y)=-V$, integrafe + five, can cany out intyratioi. expleity. GET:

$$
r_{0}=\sqrt{\pi} \int_{\frac{V_{\text {reset }}-\mu_{0}}{\sigma_{0}}}^{\frac{V_{\text {thresh }}-\mu_{0}}{\sigma_{0}}} \begin{aligned}
& d x \exp \left(x^{2}\right)[1+\exp (x)]
\end{aligned}
$$

Cansider small perturbatici to ONE of paramaters μ of σ^{2}.
Do care where μ perturbel here.

$$
\begin{aligned}
\mu & \rightarrow \mu_{0}+\varepsilon[\cos (\omega t)+i \sin (\omega t)] \quad ; \sigma^{2} \equiv \sigma_{0} \\
& =\mu_{0}+\varepsilon e^{i \omega t} \\
p(t) & =p_{0}(y)+\varepsilon_{p_{1}}\left(y_{1} t\right) ; r(t)=r_{0}+\varepsilon r_{1}(t)
\end{aligned}
$$

Po(y).r. solud above. Ands at $O\left(\varepsilon^{\prime}\right)$:
(l') $\quad \frac{\partial}{\partial t} p_{1}(v, t)=-\frac{\partial}{\partial y} J_{1}(v)+r_{1}(f) \delta\left(v-v_{\text {reset }}\right)$
(2')

$$
\begin{aligned}
J_{1}(y) & =\left[f(y)+\mu_{0}\right] \rho_{1}(v, t)-\frac{\sigma^{2}}{2} \frac{\partial}{\partial y} \rho_{1}(y, t)-e^{i \omega t} \rho_{0}(v) \\
& \equiv J_{0} \rho_{1}-F_{1}
\end{aligned}
$$

F. Transfom...
$\left(I^{\prime}\right) \quad$ iur $p_{1}(v, \omega)=-\frac{\partial}{\partial v} J_{1}\left(v_{1} \omega\right)+\hat{r}_{i}(\omega) \delta\left(v-v_{\text {ment }}\right)$
(2.) $J_{1}(v, w)=J_{0} \rho_{1}(v, \omega)-\rho_{0}(y)$
(i) is (${ }^{s T}$-arder soe for $J_{1}(V, \omega)$ in temus of ρ_{1}
$\left(2^{\prime}\right)$ is $1^{s T}$ order GDE for $\rho_{1}(v, w)$ in tems of $J_{1}(v, w)$

Solne CoupceD system backwards fran Vtwwen, agai viai nomenail uit gatio.
\longrightarrow Frequeny resparse

$$
\begin{aligned}
& C_{s}(\omega)=\frac{\hat{r}_{1}(\omega)}{e^{i \omega t}} ; \text { write } C_{\Delta}(\omega)=A_{1}(\omega) e^{i \phi_{A}(\omega)} \\
& \text { Key reoults: }
\end{aligned}
$$

Fig. 13.9 Eseide...] E'F alls

For... Modulatia yía $\mu(t)$

- Resonanue li $A_{1}(\omega)$ near $\frac{1}{r_{0}}$ disappears with more bachgound noise $\sigma_{\text {a }}^{2}$
- Low faquemers Not phan slifted... - low woie $\longrightarrow-45^{\circ}$ slift for high frer. high woise $\rightarrow 90^{\circ}$

For... Wodulata vià $\sigma(t)$

- Similar resmance
- Phase slifts always $\longrightarrow-90^{\circ}$.

Point... "Backeground" σ_{0}^{2} imparts temporal proussing.

3/3/2016 Re -Entiy liguore in' future years).

$$
I(t) \longrightarrow{ }_{p}^{f(r, t)} \xrightarrow{r(t)}=r_{0}+C_{0} * I(t)
$$

cownent

Norsy "backyround" input

Lineor Respase fieter $G(t)$
(Depents on μ, σ)
Conguted in last class, da Gerstuer of al 13.5 .2 .

- AND... (See Ostojict Brame, Plos CB 2015)...
$C_{S}(\omega)$ is critical in liaking noisy newral populatia's \rightarrow cocy spiking models.

$$
\mu(t), \sigma(t)
$$

\rightarrow CsCM: vate $r(t)=F(D * s(t))$; around a baselune $0, r(t)=r_{0}+F^{\prime}(0) D * S(-1)$

$$
\begin{aligned}
& =r_{0}+c_{s}(t) * s(t) \\
& \longrightarrow D=C_{s}(t) / F^{\prime}(0)
\end{aligned}
$$

- Nous, unsider stramy state rezponse to stumalus $s(t) \equiv \bar{s}$.

$$
\bar{r}=F(D * \bar{s})=F\left(D_{0} \bar{s}\right) \text {, where } D_{0}=\int_{0}^{t_{0}} D\left(t^{\prime}\right) d t^{\prime}
$$

Also $\bar{r}=r_{0}\left(I_{0}+\bar{s}\right)$
Functui
"Bascouse " 5 m

$$
\begin{aligned}
& F\left(D_{0} \bar{s}\right)=r_{0}\left(I_{0}+\bar{s}\right) \\
& F(\bar{s})=r_{0}\left(I_{0}+\bar{s} / D_{0}\right)
\end{aligned}
$$

Frum
Fother-Plareh
Say: Also trme for dynamic stimuli \longrightarrow
(*), abar:: $\quad r(t)=F(D * s(t))=$

$$
\text { so Model is... } \begin{aligned}
r(t) & =r_{0}\left(I_{0}+\frac{D * s(t)}{D_{0}}\right) \\
& =r_{0}\left(I_{0}+\frac{C * s(t)}{F^{\prime}(0) D_{0}}\right)
\end{aligned}
$$

[SCIDE]
Fig. 1 of Ostojict Brnel: Cood approxination of stochastially Spiking EIF system.

Thus...
Have denind link blus (noixy) LF-type Model and... Girn type model.
Usefut "Formanss" (Theay of wopled GCM,

- with linenzed $\Phi \longrightarrow$

Hawhes Proceses, expleit apprestians for correlatas + ollectue respome in networks.).
'with nalinier $\bar{\Phi}$: Fluctrata' Exparsu... Buice.)

A secund: "Rate "approx inatic... Average over ulamy indop. major USE: (MA NFBQD) copier \longrightarrow deteminsti expressiai for rates.

Connutiai to fling rate equatiais:

$$
\text { Say } C_{0}(t)=A e^{-t / \tau_{\text {off }}}
$$

... Reasonable approx. for EIF system, Fig. Y Ostgir + Brume. Pros CB
Then $C_{s} * s(t)=x(t)$, where

$$
\tau_{\text {eff }} \dot{x}=-x+A s(t) \quad(x(0)=0)
$$

Hame Rate Dynamics:

$$
\begin{aligned}
\tau \dot{x}=-x+A(s(t)), \quad r & =r_{0}\left(I_{0}+\frac{x}{D_{0}}\right) \\
& \equiv f(x), \text { sigmoid }
\end{aligned}
$$

Coupled vole equations... [Aside Below an comply via rates']

Ande on coupcing vis rates r :

Poisson procoss w/ vate r.
mean
sth. dev
\# spiles in st $=r \Delta t$
" " $=\sqrt{r \Delta t}$
So... if $r \gg 1$, yean \gg std. dew... approx tep outent as $r(t)$.
(. Complete" way to couple populatis....
vir coupled pap. densify equati's, $J_{e}(t)=\sum_{k} w_{i k} r_{k}(-1)$, as coured perarorily)

- Do not cover the below, 2d6... Would nerd same caveful attentia!

Also * inpartant \& ... Coner this Befoft
get to the vate eqn simplefication above, whioh has totally mean-driven dynamues.

Rathere... need a thing like Ostoir N.Nsci 2014, probably Branel $2000 /$ Bruel-Aunt 1997, that has rates $r\left(\mu, \frac{\sigma}{\sum}\right)$.

- usina a rate model to expumar existene t Staiscity of the bacanced state
"Balanced": $W_{E} J_{E}+w_{I} J_{I}=0$
E and I

Why do we exput such a state to be STABCE? van Vreuswijht Sampoluisly, Neual Comp. 2008 .

Coal: (to work througl):

- Let

$$
\begin{aligned}
& w_{E E}=J_{E E} \sqrt{N} \\
& w_{I I}=-J_{I I} \sqrt{N} \\
& w_{I E}=J_{I E} \sqrt{N}, \ldots
\end{aligned}
$$

Wuite down study stablity of the corrypondy.
L-D rate eq... L-D rate eqn...
Cet eq. cheq. constronts (JEE, JEI, efz...)
ala VU/S伯p.
Setting $\tau=1$,

$$
\begin{aligned}
& \dot{x}_{E}=-x_{E}+J_{E E} \sqrt{N} f\left(x_{E}\right)-J_{E I} \sqrt{N} f\left(x_{I}\right) \\
& \dot{x}_{I}=-x_{I}+J_{I E} \sqrt{N} f\left(x_{E}\right)-J_{I I} \sqrt{N} f\left(x_{I}\right)
\end{aligned}
$$

At lavge N :

Balanen" Fixed pont:
JEE. $f\left(x_{t}\right)=J_{E I} \quad f\left(x_{I}\right)$
JII $f\left(X_{E}\right)=J_{\text {II }} f\left(x_{I}\right)$
(Exists: 2 eq"s in 2 inknowns.
Nead inquality castonts fre pasituie sourtes for $f(x)$.

Staslily: Curateel 2-D liverization, eigenaluis.

